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Holography and total charge�
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Abstract

We solve the variational problem associated with the total charge action on bounded domains in
D = 2 background gravitational fields. The solutions of the field equations, stability and solitons are
obtained holographically in terms of the massless spinning particles that evolve generating world-
lines which play the role of boundaries. Moreover, we construct different background gravitational
fields to apply the above mentioned program, thus we describe, in particular, solutions, stable (and
unstable) solutions and soliton solutions. © 2002 Elsevier Science B.V. All rights reserved.
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1. The total charge action

It is well known that one of the main difficulties of variational calculus is to show the
existence of a solution to an extreme value problem. The greatest mathematicians such as
Gauss, Dirichlet and Riemann took the existence of solutions to extreme value problems
for granted. For example, in electrostatics if we have the electric potentialu and look for
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a stable equilibrium of the system, then we must solve the existence of a minimum of the
energyD(u) given by the following Dirichlet integral:

D(u) =
∫
Ω

|∇u|2 dA,

whereΩ is a domain inR2. The non-negativity of the integrand in this action led Riemann
to the conclusion that there had to be a function which minimizes the energy and thus
solves the Dirichlet problem. Later, Weiertrass showed that the a priori existence of a
minimizing solution in a variational problem is by no means assured and that, in the general
case, its existence cannot be assumed. He gave examples where the lower bound cannot be
reached.

A simple example, of a variational problem with no solution in general, appears when
studying the two-dimensional non-linear O(3) sigma model and it will be the main aim
of this note. An interesting approach to this model was given in [10]. The main idea was
to identify the unit normal vector field, or, more correctly, the Gauss map of a surface in
R

3 with the vector field of the O(3) model. In this way, a correspondence may be defined
between surfaces inR3 and solutions (solitons in general) to the field equation of the model.
Let (M, g) be isometrically immersed in the EuclideanR

3 and putN to denote its Gauss
map. The pullback,N∗(dσ 2), of the element of area, dσ 2, on the unit two-sphere, defines
the so-called charge density along(M, g). It is computed to beN∗(dσ 2) = Gg dA, where
dA andGg are the element of area and the Gaussian curvature, respectively, of(M, g). Now,
letΩ ∈ R

2 be a bounded domain with smooth boundary,∂Ω, and consider the space,Γ , of
embeddings,φ, fromΩ inM. The total charge, or total curvature functional,Cg : Γ → R,
is defined by

Cg(φ) =
∫
φ(Ω)

Gg dA.

This functional measures the area of the spherical image ofφ(Ω) via N in the unit
two-sphere. In particular,

Q =
∫
M

N∗(dσ 2)

is interpreted physically as a topological charge of the soliton and when the configuration
M is assumed to be compact, then 2Q is its Euler characteristic.

If (M, g) is a round sphere, then the variational problem associated with the charge action
Cg has no solution. We cannot findφ ∈ Γ such thatCg(φ) is a minimum. What is more,
as a consequence of our results here, it does not even have any critical point. Curiously
enough, however, if(M, g) is an anchor ring, then domains with minimum and maximum
charges are obtained. In fact,Cg reaches its minimum (respectively, its maximum) whenΩ

is an annulus andφo : Ω → M maps diffeomorphicallyΩ into the region of(M, g)made
up of hyperbolic points (respectively, elliptic points) andφo(∂Ω) is just the two curves of
parabolic points in(M, g).

Since the dynamics associated with the total charge action is intrinsic to(M, g), we
deal with smooth surfaces in general, no matter the ambient space, perhapsR

3, where
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they could be immersed. Therefore, in this note,M will denote a surface andg any Rie-
mannian metric onM. Also, ∇g andGg will denote its Levi-Civita connection and its
Gauss curvature function, respectively. Thus, in this context, we can consider the charge
density along(M, g) and then to study the field theory associated with the Lagrangian
defined as the charge action operator,Cg. In order to do that, we first notice that the
Gauss–Bonnet formula gives a natural relationship between the total charge functional
of a domain,φ(Ω), and the one which measures the total curvature of its boundary,
φ(∂Ω), in (M, g). Therefore, we defineΛ to be the space of closed curves inM (one
can consider immersed curves in a more general context, as we did in [1]) and defineFg :
Λ → R by

Fg(γ ) =
∫
γ

κg ds,

whereκg is the oriented curvature ofγ in (M, g). This action defines a model of massless,
spinning, relativistic particle, on a curved background gravitational field, in whichκ is the
proper acceleration of the particle. The model was first introduced, about 10 years ago,
by Plyushchay [11–13] and then widely studied (see e.g. [5–9]). As we said before, both
actions have to obey the Gauss–Bonnet formula,

Cg(φ)+ Fg(φ(∂Ω)) = 2π(1 − h),
whereh is the number of holes ofΩ. This formula gives a kind of topological holographic
principle. However, by studying the variational problem associated withFg, (both varia-
tional problems are equivalent) we will obtain the real holographic core of the subject [3].
The solutions of the motion equations for charge dynamics so as the stability of solutions
and soliton solutions are available, in some sense, in the behavior of the charge along the
boundary.

2. Critical points and stability

In (M, g), we definePg = {p ∈ M/Gg(p) = 0}, the set of zeroes ofGg and
Rg{p ∈ Pg/∇gGg(p) �= 0}, where∇gGg represents the gradient ofGg in (M, g). If
(M, g) is the Euclidean plane, then the turning tangents theorem givesFg(γ ) = 2π · i(γ ),
wherei(γ ) is the rotation index ofγ . Moreover,Fg is constant on each regular homo-
topy class of curves inΛ. In studying the variational problem associated toFg, in higher
dimensional backgrounds [1], we found that the same happens in any surface with zero
Gaussian curvature but, in contrast with this fact, there are no critical points when con-
sidering non-zero constant Gaussian curvature surfaces. In fact, we have the following
result.

Theorem. For a given γ ∈ Λ, the following assertions hold:

1. γ ∈ Λ is a critical point of Fg if and only if it is contained in Pg.
2. A critical point γ of Fg is stable if and only if it is contained in Rg.
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In particular, a massless, spinning, relativistic particle evolves in (M, g) with world
trajectory contained in Pg and a stable relativistic particle has worldline in Rg.

Proof. The first-order variation of the action functionalFg on the space of elementary fields,
Λ, can be easily computed from a standard argument which involves some integrations by
parts. Therefore, for anyγ ∈ Λ and anyW ∈ TγΛ (a vector field alongγ ), we may consider
a curve inΛ which is defined inM from the variation,Φ : [0, L] × (−ε, ε) → M, by
Φ(s, t) = expγ (s)t ·W(s). Let us denote byT (s, t), N(s, t),W(s, t) the usual extensions
toΦ. Then we have

d

dt
Fg(Φ(s, t)) =

∫ L

0
〈W,E〉 ds, (1)

whereE(s, t) = Rg(N(s, t), T (s, t))T (s, t), Rg being the Riemannian curvature tensor
of g. By evaluating (1) att = 0, we obtain thatγ is a critical point ofFg if and only if
Rg(N(s), T (s))T (s) = 0, proving the first statement.

To compute the second-order variation of the LagrangianFg alongΛ, we differentiate
(1):

d2

dt2
Fg(Φ(s, t)) =

∫ L

0
〈∇gWW,E〉 ds +

∫ L

0
〈W,∇gWE〉 ds,

and evaluating att = 0, we get

d2

dt2
Fg(Φ(s, t))|t=0 =

∫
γ

∂Gg

∂t |t=0
〈W(s),N(s)〉 ds. (2)

It is enough to consider variations associated to vector inγ given byW(s) = ϕ(s)N(s).
Then

d2

dt2
Fg(Φ(s, t))|t=0 =

∫
γ

ϕ
∂Gg

∂t |t=0
ds. (3)

Using polar coordinates around the points of the elementary fieldγ , we can compute

∂Gg

∂t |t=0
= ϕ ·N(Gg),

and so

d2

dt2
Fg(Φ(s, t))|t=0 =

∫
γ

ϕ2 ·N(Gg)ds. (4)

One finishes from (4) by observing that the gradient ofGg alongγ is precisely∇gGg(γ (s)) =
N(Gg) ·N(s).

Combining the above result and the Gauss–Bonnet formula, we obtain the following
consequence which gives an interesting interplay between bulk and boundary dynamics. It
states that all information about theCg dynamics in the bulk of a bounded region is available
on the boundary of the region. This can be viewed as an example of what holography may
mean [3]. �
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Corollary. The critical points of the total charge action are those domains bounded by
worldlines of massless, spinning, relativistic particles that evolve free of charge in Pg. The
stable critical points of the total charge action are those critical points where the boundary
relativistic particles are regular for charge density and so they evolve inRg.More concretely,
a domain of (M, g) is a critical point of the total charge action if and only if the charge
vanishes identically on its boundary. A critical domain is stable if and only if the charge
density is also free of critical points along its boundary. This is in particular case when
zero is a regular value for the charge.

3. Some examples and applications

Example 1. Let (M, g) be a surface of revolution and assume thatPg is free of interior
points. Then, the regions with critical charge must be among those bounded by parallels.
Therefore, a candidate to provide a maximum or a minimum for total charge should be a
domain of(M, g) whose boundary is made up of worldlines of massless, spinning, rela-
tivistic particles that evolve along parallels. Assume that(M, g) is obtained by revolving
around thez-axis a curveα(s) with local arclength parameterization(f (s),0, h(s)). Then
(M, g) can be parameterized byx(s, θ) = (f (s) cosθ, f (s) sinθ, h(s)). For a suitable
orientation, the curvature of a parallel in(M, g) is κg = f ′/f and, therefore, the total
tension on a given parallelγ ∈ Λ isFg(γ ) = ∫

γ
κg = 2π · f ′. This indicates that the vari-

ational problem forFg reduces to a one-dimensional one: the determination of maxima,
minima and in general critical points off ′. Actually, since the charge density is defined
by the Gaussian curvature function andGg = −f ′′/f , we have that the parallels with
critical tension correspond to the isolated zeroes off ′′. In particular, we see that a domain
Ω in M carries a critical charge in(M, g) if and only if its boundary,∂Ω, is formed by
world trajectories of relativistic particles that are parallels made up of parabolic points.
Also, it is known thatN(Gg) = f ′′′/f , whereN is the unit normal vector of a paral-
lel. Consequently, the stability condition for a critical parallel turns out to bef ′′′ > 0
(or f ′′′ < 0).

A typical example is the anchor ring of radiia > r > 0. The distance to thex-axis is
f (s) = a + r cos(s/r). This torus has exactly two parallels where the density of charge
vanishes identically, those obtained fors = ±r(π/2). ThusFg has exactly two curves with
critical tension. Sincef ′′′(r(π/2)) = 1/r2 andf ′′′(−r(π/2)) = −1/r2, they are stable
and correspond to the minimum and maximum ofFg on the set of parallels,−2π and 2π ,
respectively. Hence, the domains of the anchor ring bounded by the top and bottom parallels
are the only two regions with critical charge. Moreover, they are stable. Observe also, that
no matter what the values ofa and r are the absolute value of the total charge in these
critical domains is 2π .

On the other hand, one can construct suitable functionsf on a circle so that: For any
natural numbern, there exists a surface of revolution of genus one with exactlyn do-
mains that carry critical charge. They are obtained when rotaten parabolic, massless, spin-
ning, relativistic particles, that is,n particles whose worldlines are formed by parabolic
points.
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Example 2. Letα(s) be an unit closed curve with positive curvatureκ(s) in R
3. For any real

numberr �= 0, we can define the tube of radiusr aroundα by x(s, v) = α(s) + r(cosv ·
N(s) + sinv · B(s)), where{T ,N,B} stands for the Frenet frame ofα. The Gaussian
curvature, that is the density of charge, of this tube with respect to the metricg induced by
that ofR3 is given by

Gg = −rκ cosv

r2(1 − rκ cosv)
,

which vanishes precisely forv = ±π/2. Thus,Fg has exactly two critical points which
correspond to two parabolic, relativistic particles. The corresponding worldlines, expressed
in the above parameterization, are given byβ1 = α(s) + rB(s) andβ2 = α(s) − rB(s).
Moreover, since∂Gg/(∂v)|v=±π/2 = ±κ/r, we see that both are stable giving exactly
a maximum and a minimum. Consequently, a tube around a positively curved closed
curve in R

3 has exactly two domains with critical charge. They are determined holo-
graphically from the above obtained parabolic, relativistic particles and so they are also
stable.

Example 3. LetM be a compact surface andχ(M) its Euler characteristic. Ifχ(M) �= 0,
then we can find metrics of non-zero constant Gaussian curvature (homogeneous density
of charge). Therefore, according to our theorem here, we find gravitational fields inM

which are free of regions with critical charge. This is the case, in particular, for the round
two-sphere and Poincare surfaces.

In contrast with the above fact, ifχ(M) = 0, then every metricg onM has at least a closed
critical pointγ ∈ Λ for Fg. This follows from the following argument: the Gauss–Bonnet
theorem implies that the setsM+ = {p ∈ M/Gg > 0} andM− = {p ∈ M/Gg < 0}
are non-empty open subsets ofM. Furthermore,M+ ∪M− = M − Pg is not connected,
so that we can find at least a closed curve inPg. Thus, given any gravitational fieldg,
on a surfaceM with zero Euler characteristic, one can find at least a massless, spinning,
relativistic particle that evolves through a worldline of parabolic points, (here we use the
term of parabolic point even when the surface was not isometrically immersed in Euclidean
space).

Example 4. LetM be a compact orientable surface andn any natural number. We have:
There exists a gravitational fieldg onM, such that(M, g) has exactlynmassless, spinning,
relativistic particles that evolve through worldlines which are stable critical points ofFg.
Moreover, there existn domains with critical charge and stable in(M, g), which can be
holographically determined by the above-mentioned particles. To show this claim and since
the genus ofM is not essential in the argument, we may assume without loss of generality
thatM has genus zero. Up to a diffeomorphism, we can regardM as a round sphere of
radius 1 and centered at the origin ofR

3. Now, for n ∈ N, we choosen real numbers
−1 < a1 < · · · < an < 1 and consider the parallel planesπi : {z = ai}, 1 ≤ i ≤ n.
Let fi : M → R be the restriction toM of the oriented height function to the planeπi .
That is, if Fi : R

3 → R is given byFi(x, y, z) = z − ai , thenfi = (Fi)|M . Define
h : M → R by h(p) = �ni=1fi(p). It is clear that the zeroes ofh onM are the parallels of
the sphere obtained by cutting it with the planesΠi . Sinceh is positive somewhere, we use
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a well-known result of Kazdan and Warner [4], to obtain a background gravitational field,
g whose density of charge isGg = h. These parallels are worldlines of stable parabolic
particles because the gradient ofh is free of zeroes along these curves.

Example 5. As we said before, there are no domains (respectively, relativistic particles)
of critical charge (respectively, parabolic) in the usual gravitational field on a two-sphere,
that is in the round two-sphere. However, by using standard techniques on extension of
differentiable functions along with the quoted Kazdan–Warner result [4], one can find
variational fields,g, on a two-dimensional spherical background such that

1. 0≤ Cg ≤ 4π and−2π ≤ Fg ≤ 2π .
2. Moreover,g can be chosen so that the total charge,Cg, and the total tension,Fg, reach

either both global and local (non-global) extrema, or reach only local extrema.
3. This shows the existence of solitons, for the field equation associated with the total charge

action in those gravitational fields on two spherical background. These solitons carry
charges and, in general, they are determined holographically from massless, spinning,
relativistic particles that evolve along their boundaries.

Example 6. Again we take a compact Riemannian surface(M, g) and any eigenfunc-
tion f of its Laplacian. Let us suppose thatγ1, γ2, . . . , γr are closed nodal curves asso-
ciated tof (recall that they are curves wheref vanishes identically). Then there exists
a background gravitational field̃g such thatγ1, γ2, . . . , γr are the world trajectories of
parabolic, massless, spinning, relativistic particles in(M, g̃). Moreover they are the only
critical points ofFg̃ alongΛ. This can be seen by an analogous argument to that of the
previous paragraph. Since

∫
M
f dvg = 0, f changes sign onM. This is enough to ap-

ply the Kazdan–Warner result. Stability here is uncertain, however, because nodal curves
may have a finite number of points where the gradient of the density of charge vanishes
[2].

Example 7. Finally, let us consider a compact surface of genus zeroM, andγ any Jordan
curve on it. Without loss of generality we may assume thatM is the round sphere centered
at the origin. By using the differentiable version of the Jordan–Schoenflies theorem [14],
we can extend the homeomorphism betweenγ and the equator corresponding to the plane
π : z = 0, to a diffeomorphism of the sphere. Composing now with the oriented height
function toπ , one obtains a differentiable function on the sphere, which vanishes onγ and
that is positive somewhere. Therefore, by the Kazdan–Warner result, we have:

1. For any Jordan curveγ on a compact surface of genus zeroM, we can construct a
background variational field,g, so thatγ and−γ are the only worldlines of massless,
spinning, relativistic particles in(M, g), moreover they are stable as critical points of
Fg.

2. For any one-connected domainΩ of M, there exists a background variational field,g,
such thatΩ carries the maximum of topological charge andM−Ω carries the minimum
of topological charge. Both stable bulk dynamics are holographically determined by the
above parabolic, relativistic, Jordan particles.
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